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In analogy to a perturbed harmonic oscillator, we calculate the fundamental and some other higher order
soliton solutions of the nonlocal nonlinear Schödinger equation �NNLSE� in the second approximation in the
generally nonlocal case. Comparing with numerical simulations we show that soliton solutions in the second
approximation can describe the generally nonlocal soliton states of the NNLSE more exactly than that in the
zeroth approximation. We show that for the nonlocal case of an exponential-decay type nonlocal response the
Gaussian-function-like soliton solutions cannot describe the nonlocal soliton states exactly even in the strongly
nonlocal case. The properties of such nonlocal solitons are investigated. In the strongly nonlocal limit, the
soliton’s power and phase constant are both in inverse proportion to the fourth power of its beam width for the
nonlocal case of a Gaussian function type nonlocal response, and are both in inverse proportion to the third
power of its beam width for the nonlocal case of an exponential-decay type nonlocal response.
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I. INTRODUCTION

Since Snyder and Mitchell’s pioneering work �1�, spatial
solitons propagating in nonlocal nonlinear media have been
investigated experimentally and theoretically in a variety of
configurations and material systems. It is theoretically indi-
cated that stable spatial bright �dark� soliton states can be
admitted in self-focus �self-defocus� weekly nonlocal media
�2� and Gaussian-function-like bright soliton states can be
admitted in self-focused strongly nonlocal media �1,3�. It has
been shown theoretically that nonlocality drastically modi-
fies the interaction of dark solitons by inducing a long-range
attraction between them, thereby permitting the formation of
stable dark soliton bound states �4�. The propagation proper-
ties of light beams in the presence of losses in the strongly
nonlocal case are different from that in the local case �5�. By
considering the special case of a logarithmic type of nonlin-
earity and a Gaussian-function type nonlocal response, the
dynamics of beams in partially nonlocal media �6� and the
propagation of incoherent optical beams �7� are analytically
studied. By using the variational principle, the propagation
properties of a solitary wave in nonlinear nonlocal medium
with a power function type nonlocal response are studied �8�.
The modulational instability of plane waves in nonlocal Kerr
media �9,10� and the stabilizing effect of nonlocality �11�
have been studied. The analogy between parametric interac-
tion in quadratic media and nonlocal Kerr-type nonlinearities
can provide a physically intuitive theory for quadratic soli-
tons �12�. Some properties of the strongly nonlocal solitons
�SNSs� and their interaction are greatly different from that in
the local case, e.g., two coherent SNSs with � phase differ-
ence attract rather than repel each other �1�, the phase shift of
the SNS can be very large compared with the local soliton
with the same beam width �3�, and the phase shift of a probe
beam can be modulated by a pump beam in the strongly
nonlocal case �13�. Employing a Gaussian ansatz and using a
variational approach, the evolution of a Gaussian beam in the

substrongly nonlocal case is studied �14�. Recently it is ex-
perimentally shown that solitons in the nematic liquid crystal
�NLC� are SNSs �15,18�. The team of Assanto has developed
a general theory of spatial solitons in the NLC that exhibit
nonlinearity with an arbitrary degree of an effective nonlo-
cality and established an important link between the SNS and
the parametric soliton �15–18�. They also experimentally in-
vestigated the role of the nonlocality in transverse modula-
tional instability �MI� in the NLC �16,17� and observed the
optical multisoliton generation following the onset of spatial
MI �19�. The interaction of SNSs has been experimentally
demonstrated �20,21�, and the possibility of all-optical
switching and logic gating with SNSs in the NLC has been
discussed �22�.

However, the theoretical studies on the spatial nonlocal
soliton are mostly focused on the strongly nonlocal case
�1,3,5,13,15,18� and the weekly nonlocal case �2�. There is a
lack of study on the moderate nonlocal case. On the other
hand, even though a convenient method has been introduced
in Refs. �3,5,13,14� to study the propagation of light beams
in the strongly nonlocal case or even in the substrongly non-
local case, to employ this method efficiently the nonlocal
response function must be twice differentiable at its center.
As will be shown this method cannot deal with the nonlocal
case of an exponential-decay type nonlocal response function
that is not differentiable at its center. In this paper, in analogy
to a perturbed harmonic oscillator, we calculate the funda-
mental and some other higher order soliton solutions of the
nonlocal nonlinear Schrödinger equation �NNLSE� in the
second approximation in the generally nonlocal case. Our
method presented here can deal with the nonlocal case of an
exponential-decay type nonlocal response function. Numeri-
cal simulations conform that the soliton solution in the sec-
ond approximation can describe the generally nonlocal soli-
ton states of NNLSE more exactly than that in the zeroth
approximation. It is shown that for the nonlocal case of an
exponential-decay type nonlocal response the Gaussian-
function-like soliton solutions cannot describe the fundamen-
tal soliton states of the NNLSE exactly even in the strongly
nonlocal case, that is greatly different from the case of a
Gaussian-function type nonlocal response. The properties of*Electronic address: guoq@scnu.edu.cn
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such nonlocal solitons are investigated. The functional de-
pendence of such nonlocal soliton’s power and phase con-
stant on its beam width is greatly different from that of the
local soliton. Furthermore this functional dependence for the
nonlocal case of a Gaussian-function type nonlocal response
greatly differs from that of an exponential-decay type nonlo-
cal response. In particular in the strongly nonlocal limit, the
nonlocal soliton’s power and phase constant are both in in-
verse proportion to the fourth power of its beam width for
the nonlocal case of a Gaussian-function type nonlocal re-
sponse, and are both in inverse proportion to the third power
of its beam width for the nonlocal case of an exponential-
decay type nonlocal response.

II. THE FUNDAMENTAL GENERALLY NONLOCAL
SOLITON SOLUTION IN THE SECOND APPROXIMATION

Let us consider the �1+1�-D dimensionless nonlocal non-
linear Schödinger equation �NNLSE� �2,3,7–10,12�

i
�u

�z
+

1

2

�2u

�x2 + u�
−�

+�

R�x − ���u��,z��2d� = 0, �1�

where u�x ,z� is the complex amplitude envelop of the light
beam, x and z are transverse and longitude coordinates re-
spectively, R�x��0 is the real symmetric nonlocal response
function, and

n�x,z� = �
−�

+�

R�x − ���u��,z��2d� �2�

is the light-induced perturbed refractive index.
As indicated in Ref. �3�, if R�x� is twice differentiable at

x=0 and the second derivative R��0��0, and if the charac-
teristic nonlocal length is one order of the magnitude larger
than the beamwidth of the soliton, the NNLSE �1� can be
simplified to the following strongly nonlocal model �SNM�:

i
�u

�z
+

1

2

�2u

�x2 + u�
−�

+� �R0 +
R0�

2
�x − ��2��u��,z��2d� = 0,

�3�

where R0=R�0� and R0�=R��0�. For example, for the
Gaussian-function type nonlocal response function R�x�
=1/ �w0

	��exp�−x2 /w0
2�, when the characteristic nonlocal

length w0 is one order of the magnitude larger than the beam
width, the SNM �3� can describe the NNLSE �1� very well
�3�. However, as will be shown, when the characteristic non-
local length and the beamwidth are in the same order of the
magnitude, the SNM �3� cannot describe the NNLSE �1�
very well. The SNM �3� cannot deal with the generally non-
local case. Further more, for the exponential-decay type non-
local response function R�x�=1/ �2w0�exp�−�x� /w0� which is
not differentiable at x=0, we cannot get the parameter R0� of
the SNM �3�. So the SNM �3� cannot deal with this nonlocal
case of such an exponential-decay type nonlocal response.

The SNM �3� allows a Gaussian-function-like bright soli-
ton solution

u0�x,z� = A
 1

��2�1/4

exp�−
x2

2�2 − i
 3

4�2 − R0A2�z� , �4�

where

1

�4 = − R0�A
2, �5�

and � is the beam width of u0�x ,z�. The power P and the
phase constant � of u0�x ,z� are given by

P = �
−�

+�

�u�x,t��2dx = A2, �6�

� = R0A2 −
3

4�2 , �7�

respectively.
In this paper, we define the degree of nonlocality by the

ratio of the characteristic nonlocal length to the beamwidth
of the light beam and use the phrase “generally nonlocal
case” to refer to the nonlocal case where the degree of non-
locality is larger than one and less than ten. For the
Gaussian-function type nonlocal response function and the
soliton solution �4�, the degree of nonlocality is w0 /�. The
larger of w0 /�, the stronger of the nonlocality. In fact for a
given type of nonlocal response, soliton solutions with the
same degree of nonlocality can be described in the same
way. This can be clarified by taking transformations

x̄ =
x

�
z̄ =

z

�2 ū = �u R̄ = �R . �8�

Under these transformations, the form of NNLSE �1� keeps
invariant and the degree of nonlocality keeps invariant too. If
we set � equal to the characteristic nonlocal length of R�x�,
the characteristic nonlocal length of R̄�x̄� will be scaled to
unity and the degree of nonlocality will be determined only
by the beam width of ū�x̄ , z̄�. In this case the less of the
beamwidth of ū�x̄ , z̄�, the stronger of the nonlocality. On the
other hand we may also set � equal to the beamwidth of
u�x ,z�. If we do this, the degree of nonlocality will be deter-

mined only by the characteristic nonlocal length of R̄�x̄�. The

larger the characteristic nonlocal length of R̄�x̄�, the stronger
the nonlocality. In this paper, the characteristic nonlocal
length of R�x� and the beamwidth of u�x ,z� are not scaled to
unity.

For the soliton state u�x ,z�, we have �u�−x ,z��2
= �u�x ,z��2 and �u�x ,z��= �u�x ,0��. So for the soliton state
u�x ,z�, by defining

V�x� = − �
−�

+�

R�x − ���u��,z��2d� , �9�

the NNLSE �1� reduces to

i
�u

�z
+

1

2

�2u

�x2 − V�x�u = 0. �10�

Taking the Taylor’s expansion of V�x� at x=0, we obtain
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V�x� = V0 +
1

2	4x2 + 
x4 + �x6 + ¯ , �11�

where

V0 = V�0� , �12a�

1

	4 = V�2��0� , �12b�


 = 1
4!V

�4��0� , �12c�

� = 1
6!V

�6��0� . �12d�

As will be shown, in the generally nonlocal case and the
strongly nonlocal case the parameter 	 can be viewed as the
beamwidth of the soliton, and when x�	, the terms 
x4 and
�x6 are one and two orders of magnitude smaller than the
term x2 / �2	4�, respectively. That indicates the effects of 
x4

and �x6 on the soliton are considerably small compared with
the effect of x2 / �2	4� in the generally nonlocal case. Further-
more in the generally nonlocal case, the effects of the x8

power term and the other higher power terms of the Taylor’s
series of V�x� on the soliton are far smaller than the effects of
the three lower power terms. For convenience sake we will
neglect such higher power terms in the following discussions
and simply adopt

V�x� = V0 +
1

2	4x2 + 
x4 + �x6. �13�

However, as the degree of nonlocality decreases the effects
of 
x4, �x6 and other higher power terms become larger and
larger, and when the characteristic nonlocal length is compa-
rable with or less than the beamwidth of the soliton, the x8

power term and other higher power terms are no longer neg-
ligible. For such cases we must take the higher power terms
of the Taylor’s series of V�x� into account.

In the generally nonlocal case, substitution of Eq. �13�
into Eq. �10� yields

i
�u

�z
= �−

1

2

�2

�x2 + V0 +
1

2	4x2 + 
x4 + �x6�u . �14�

Taking a transformation

u�x,z� = �n�x�exp�− i�
n + V0�z� , �15�

we arrive at

�−
1

2

d2

dx2 +
1

2	4x2 + 
x4 + �x6��n = 
n�n, �16�

where the index n=0,1 ,2 , . . . is the order of the soliton so-
lution, in particular n=0 corresponding to the fundamental
soliton solution and n=1 corresponding to the second order
soliton solution and so on. Even though Eq. �16� takes the
form of the stationary Schrödinger equation, the parameters
	 ,
 ,� are dependent on the soliton solution �n�x�.

If 
=0 and �=0, Eq. �16� reduces to the well-known
stationary Schrödinger equation for a harmonic oscillator.
Since in the generally nonlocal case the effects of the terms


x4 and �x6 on the soliton are far smaller than that of the
term x4 / �2	4�, we view the terms 
x4 and �x6 as perturba-
tions in the process of solving Eq. �16�. Following the per-
turbation method presented in any textbook about quantum
mechanics �for example, �23��, we get for the fundamental
soliton solution in the second approximation

�0�A,
,�,x� � A
 1

�	2�1/4

exp
−
x2

2	2�
� �1 + 

9	6

16
−

3	4

4
x2 −

	2

4
x4�

+ 
2
−
1247	12

512
+

141	10

64
x2 +

53	8

64
x4

+
13	6

48
x6 +

	4

32
x8� + �
55	8

32
−

15	6

8
x2

−
5	4

8
x4 −

	2

6
x6�� , �17�

and


0 �
1

2	2 +
3	4


4
−

21	10
2

8
+

15	6�

8
. �18�

In Eqs. �17� and �18�, if we neglect the 
 ,
2 ,� terms or
neglect the 
2 ,� terms only, we will get for the fundamental
soliton solution in the zeroth approximation or in the first
approximation, respectively.

Substituting Eq. �17� into Eq. �9�, we have

V�A,
,�,x� = − �
−�

+�

R�x − ���0
2�A,
,�,��d� . �19�

Keeping in mind Eqs. �12�, we obtain

1

	4 = V�2��A,
,�,0� , �20a�


 = 1
4!V

�4��A,
,�,0� , �20b�

� = 1
6!V

�6��A,
,�,0� . �20c�

For a fixed value of parameter 	, the parameters A ,
 ,�
can be found by solving Eqs. �20�. In Appendix A, we
present a fixed-point method to numerically calculate these
parameters based on Eqs. �20�. Here and above we have
formally presented the main formulas to calculate the per-
turbed fundamental generally nonlocal soliton solution in the
second approximation.

A. The nonlocal case of a Gaussian-function type nonlocal
response

As an example, let us consider the nonlocal case of a
Gaussian-function type nonlocal response �3,6,7,9,11�
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R�x� =
1

w0
	�

exp
−
x2

w0
2� . �21�

For the SNM �3� and the soliton solution �4�, we can find the
fundamental soliton solution for such a Gaussian-function
type nonlocal response in the strongly nonlocal case

u0�x,z� = 
	�w0
3

2�4 �1/2
 1

��2�1/4

e−�x2/2�2�−i
 3

4�2
−

w0
2

2�4
�z.

�22�

This soliton solution can describe the soliton state of the
NNLSE �1� exactly in the strongly nonlocal case when the
degree of nonlocality w0 /��10, but cannot describe the soli-
ton state in the generally nonlocal case when w0 /�
2.

In the generally nonlocal case, the fundamental soliton
solution in the second approximation is described by
�0�A ,
 ,� ,x� in Eq. �17�. As shown in Fig. 1 when w0=2,
	=1, and A=3.22, 
=−0.0487, �=0.003 17 numerically
calculated by the fixed-point method presented in Appendix
A, the difference between the fundamental soliton solution in
the second approximation �0�A ,
 ,� ,x� and that in the ze-
roth approximation �0�A ,0 ,0 ,x� is comparatively small. As
a Gaussian function, the power and the beamwidth of
�0�A ,0 ,0 ,x� are given by A2 and 	, respectively. Therefore
the power and the beamwidth of �0�A ,
 ,� ,x� are approxi-
matively given by A2 and 	, respectively, too. So in the
generally nonlocal case we can approximately determine the
degree of nonlocality by w0 /	, and approximately obtain

V�x� � − �
−�

+� 1

w0
	�

exp�−
�x − ��2

w0
2 ��0

2�A,0,0,��d�

= −
A2

	��	2 + w0
2�

exp
−
x2

	2 + w0
2� , �23�

and

A2 �
	��1 + w0

2/	2�3/2

2	
, �24a�

V0 � −
�1 + w0

2/	2�
2	2 , �24b�


 � −
1

4	6�1 + w0
2/	2�

, �24c�

� �
1

12	8�1 + w0
2/	2�2 . �24d�

Using Eqs. �24� for w0=2 and 	=1, we can find A
�3.14, 
�− 1

20, and �� 1
300 that are very close to the nu-

merically calculated values A=3.22, 
=−0.0487, and �

=0.003 17, and we can find � 
x4

x2/�2	4� ��� x2

10	2 ��0.1 and

� �x6

x2/�2	4� ��� x4

150	4 ��0.007 for x�	 that are consistent with

the perturbation postulate.
In the strongly nonlocal limit the degree of nonlocality

w0 /	�1, we have

A2 �
	�w0

3

2	4 , �25a�

V0 � −
w0

2

2	4 , �25b�


 � −
1

4	4w0
2 , �25c�

� �
1

12	4w0
4 . �25d�

As the degree of nonlocality w0 /	 approaches infinity, the
parameters 
 ,� both approach zero, and �0�A ,
 ,� ,x� ap-
proaches �0�A ,0 ,0 ,x�. In such a case a Gaussian-function-
like strongly nonlocal soliton solution is obtained.

Using the NNLSE �1� as the evolution equation and using
the numerical simulation method we investigate the propaga-
tion of light beams in nonlocal media with a Gaussian-
function type nonlocal response. The numerical simulation
method is the split-step Fourier method �SSFM� �24�, the
step size �z=0.01, transversal sampling range −10�x�10,
and the sampling interval �x=0.1. With different input am-
plitude envelops �the initial data of numerical simulations�
that are described by u0�x ,0� in Eq. �22�, �0�A ,0 ,0 ,x� and
�0�A ,
 ,� ,x� respectively, we show the propagations of
these light beams in Fig. 2. It is indicated that in the gener-
ally nonlocal case when the degree of nonlocality w0 /	=2,
�0�A ,
 ,� ,x� can describe the soliton state of the NNLSE �1�
more exactly than �0�A ,0 ,0 ,x� and u0�x ,0� in Eq. �22�. The
soliton solution in the second approximation �0�A ,
 ,� ,x�
also can describe the soliton state of the NNLSE �1� exactly
when w0 /	=1, that is shown in Fig. 3. However, when
w0 /	=0.5, as indicated in Fig. 4, �0�A ,
 ,� ,x� cannot de-
scribe the soliton state of the NNLSE �1� exactly. In such a
case, we must take the higher power terms of the Taylor’s
series of V�x� into account and calculate the higher order
approximation. To show how exactly �0�A ,
 ,� ,x� describe
the fundamental soliton state, we define

��z� =��
−�

+�

�u�x,z�e−i��z� − u�x,0��2dx

�
−�

+�

�u�x,0��2dx

, �26a�

FIG. 1. The comparison between ��0�A ,
 ,� ,x��2 �dashed line�
and ��0�A ,0 ,0 ,x��2 �solid line�. Here w0=2, 	=1, A=3.217,

=−0.0487, �=0.003 17, and the degree of nonlocality w0 /	=2.
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�̄ =

�
0

l

��z�dz

l
, �26b�

where ei��z� is the phase factor of u�x ,z� and for the funda-

mental soliton ei��z�=
u�0,z�

�u�0,z�� . For a fixed value of l, the less of

�̄, the more exactly �0�A ,
 ,� ,x� describe the fundamental
soliton state. As shown in Table I, �0�A ,
 ,� ,x� can describe
the fundamental soliton states exactly when w0 /	�1.

Now let us consider the properties of �0�A ,
 ,� ,x�. As
has been shown, the beamwidth of �0�A ,
 ,� ,x� is approxi-
matively given by 	, and its power and phase constant are
approximatively given by

P � A2 �
	��1 + w0

2/	2�3/2

2	
, �27�

� = − V0 − 
0 �
1

2	2�w0
2

	2 +
3

8�1 + w0
2/	2�

+
1

64�1 + w0
2/	2�2� ,

�28�

respectively. In the strongly nonlocal limit the degree of non-
locality w0 /	�1, we have

FIG. 2. The propagations of light beams in nonlocal media with
a Gaussian-function type nonlocal response with different input in-
tensity profiles that are described by �a� �u0�x ,0��2 in Eq. �22�, �b�
��0�A ,0 ,0 ,x��2 and �c� ��0�A ,
 ,� ,x��2, respectively. Here w0=2,
	=1, �=1, A=3.217, 
=−0.0487, �=0.003 17 and the degree of
nonlocality w0 /	=2.

FIG. 3. �a� The comparison between R�x� and ��0�A ,
 ,� ,x��2.
Dashed line: R�x� /R�0�; solid line: ��0�A ,
 ,� ,x��2
/ ��0�A ,
 ,� ,0��2; �b� The propagation of the light beam with an
input intensity profile described by ��0�A ,
 ,� ,x��2. Here w0=1,
	=1, A=1.777, 
=−0.113, �=0.0177, and the degree of nonlocal-
ity w0 /	=1.

FIG. 4. �a� The comparison between R�x� and ��0�A ,
 ,� ,x��2.
Dashed line: R�x� /R�0�; solid line: ��0�A ,
 ,� ,x��2
/ ��0�A ,
 ,� ,0��2; �b� The propagation of the light beam with an
input intensity profile described by ��0�A ,
 ,� ,x��2. Here w0=0.5,
	=1, A=1.403, 
=−0.178, �=0.0476, and the degree of nonlocal-
ity w0 /	=0.5.
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P �
	�w0

3

2	4 , �29�

� �
w0

2

2	4 . �30�

That means for a given value of characteristic nonlocal
length in the strongly nonlocal case the power and the phase
constant of the nonlocal soliton are both in inverse propor-
tion to the fourth power of its beamwidth. The dependence of
the power P and the phase constant � on the beamwidth 	
are shown in Fig. 5 for a given value of characteristic non-
local length. It is indicated that Eq. �27� and Eq. �30� can
describe these dependences exactly in the generally nonlocal
case.

To make a comparison with the local soliton, let us con-
sider the following local nonlinear Schrödinger equation
�NLSE� �25�:

i
�u

�z
+

1

2

�2u

�x2 + �u�2u = 0. �31�

When the characteristic nonlocal length w0 approaches zero,
the Gaussian-function type nonlocal response function R�x�
approaches the ��x� function, and the NNLSE �1� approaches
the NLSE �31�. The fundamental soliton of the NLSE �31� is
given by �25�

u�x,z� =
1

�
sech
 x

�
�exp
i

z

2�2� , �32�

where � can be viewed as the beamwidth of the local soliton.
The power and the phase constant of such a local soliton are
given by

P = �
−�

+�

�u�x,t��2dx =
2

�
, �33�

� =
1

2�2 , �34�

respectively. We can find the power and the phase constant of
the local soliton are in inverse proportion to the first and the
second power of its beamwidth, respectively. The functional
dependence of the power and the phase constant of the non-
local soliton on its beamwidth greatly differs from that of the
local soliton.

TABLE I. Using the numerical simulation method we calculate �̄ in Eqs. �26� for the nonlocal case of the
Gaussian function type nonlocal response and for the nonlocal case of the exponential-decay type nonlocal
response.

�̄

�0
a 0.020c 0.0033d 0.0027e 0.0027f 0.0026g 0.0026h 0.0026i

�1
a 0.044c 0.013d 0.013e 0.013f 0.013g 0.013h 0.013i

�0
b 0.017c 0.0095d 0.0078e 0.0072f 0.0071g 0.0069h 0.0068i

�1
b 0.072c 0.044d 0.037e 0.034f 0.032g 0.031h 0.031i

�2
b 0.36c 0.20d 0.17e 0.15f 0.14g 0.14h 0.13i

aThe nonlocal case of the Gaussian function type nonlocal response.
bThe nonlocal case of the exponential-decay type nonlocal.
cThe degree of nonlocality equal to 1.
dThe degree of nonlocality equal to 2.
eThe degree of nonlocality equal to 3.
fThe degree of nonlocality equal to 4.
gThe degree of nonlocality equal to 5.
hThe degree of nonlocality equal to 6.
iThe degree of nonlocality equal to 7.

FIG. 5. The dependence of the power P and the phase constant
� on the beamwidth 	. Dashed lines are described by Eq. �27� and
Eq. �30�, respectively; thin solid line is described by Eq. �29�; thick
solid lines are directly calculated with parameters A ,
 ,� numeri-
cally found by the fixed-point method presented in Appendix A.
Here w0=6.
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B. The nonlocal case of an exponential-decay
type nonlocal response

As another example, we investigate the nonlocal case
where the light-induced perturbed refractive index n�x ,z� is
governed by �4,9,15�

n�x,z� − w0
2�2n�x,z�

�x2 − �n�x,z��2 = 0. �35�

It is found that several nonlocal media, for example the nem-
atic liquid crystal �15,18�, their light-induced perturbed re-
fractive index can be described by Eq. �35�. If the size of the
nonlocal media is much larger than the beamwidth of the
soliton and the characteristic nonlocal length, the effect of
the boundary condition on the soliton can be negligible and
we can simply assume the size of the nonlocal media is in-
finity large. For such a case, Eq. �35� leads to

n�x,z� =
1

2w0
�

−�

+�

exp
−
�x − ��

w0
��u��,z��2d� , �36�

and we get the exponential-decay type nonlocal response
�4,7,9–11�

R�x� =
1

2w0
exp
−

�x�
w0
� . �37�

Since the exponential-decay type nonlocal response function
R�x� is not differentiable at x=0, the SNM �3� cannot deal
with this nonlocal case. So we have to use �0�A ,
 ,� ,x� to
describe the soliton state of the NNLSE �1�.

For this exponential-decay type nonlocal response and the
fundamental soliton state, V�x� can be approximately given
by

V�x� � − �
−�

+� 1

2w0
exp
−

�x − ��
w0

���0�A,0,0,���2d�

=
A2

4w0
e	2/4w0

2�e−x/w0�erf
 	

2w0
−

x

	
� − 1�

+ ex/w0�erf
 	

2w0
+

x

	
� − 1�� , �38�

where

erf�x� =
2

	�
�

0

x

e−�2
d� . �39�

Combining Eqs. �12�, we get

A2 �
1/	

	2

	�w0
2

+ exp
 	2

4w0
2� 	3

2w0
3�erf
 	

2w0
� − 1� , �40a�

V0 � −

A2 exp
 	2

4w0
2��1 − erf
 	

2w0
��

2w0
, �40b�


 �
A2�exp
 	2

4w0
2��erf
 	

2w0
� − 1� +

2w0

	�	
−

4w0
3

	�	3�
48w0

5 ,

�40c�

� �
A2�exp
 	2

4w0
2��erf
 	

2w0
� − 1� +

2w0

	�	
−

4w0
3

	�	3
+

24w0
5

	�	5�
1440w0

7 . �40d�

In the strongly nonlocal limit the degree of nonlocality
w0 /	�1, we obtain

A2 �
	�w0

2

	3 , �41a�

V0 � −
	�w0

2	3 , �41b�


 � −
1

12	6 , �41c�

� �
1

60	8 . �41d�

It is worth noting that in the strongly nonlocal case the
parameters 
 and � are free from the characteristic nonlocal
length w0. Even when the characteristic nonlocal length w0

approaches infinity, the parameters 
 ,� still rest on finite
values and do not approach zero, and therefore �0�A ,
 ,� ,x�
does not approach �0�A ,0 ,0 ,x�. That greatly differs from the
nonlocal case of a Gaussian-function type nonlocal response.
As a result the Gaussian-function-like soliton solution
�0�A ,0 ,0 ,x� cannot describe the soliton state of the NNLSE
�1� exactly even in the strongly nonlocal case, that is shown
in Fig. 6. As shown in Fig. 7, �0�A ,
 ,� ,x� also can describe
the soliton state of the NNLSE �1� exactly when w0 /	=1.
Even when w0 /	=0.5, as indicated in Fig. 8, �0�A ,
 ,� ,x�
can describe the soliton state of the NNLSE �1� in high qual-

ity. As indicated by the values of �̄ in Table I, �0�A ,
 ,� ,x�
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can describe the fundamental soliton states of NNLSE �1�
exactly in the generally nonlocal case.

In the strongly nonlocal case the soliton’s power and
phase constant are approximately given by

P � A2 �
	�w0

2

	3 , �42�

� � − V0 �
	�w0

2	3 , �43�

respectively. For a given value of the characteristic nonlocal
length, the soliton’s power and phase constant are both in
inverse proportion to the third power of its beamwidth in the
strongly nonlocal case that differs from the nonlocal case of
a Gaussian function type nonlocal response where the soli-
ton’s power and phase constant are both in inverse propor-
tion to the fourth power of its beamwidth in the strongly
nonlocal case. The dependence of the soliton’s power P and
phase constant � on its beamwidth 	 are shown in Fig. 9 for
a given value of characteristic nonlocal length. It is indicated
that Eq. �42� and Eq. �43� can describe these dependence
very well in the strongly nonlocal case.

III. THE HIGHER ORDER GENERALLY NONLOCAL
SOLITON SOLUTIONS IN THE SECOND

APPROXIMATION

A. The nonlocal case of the Gaussian-function type nonlocal
response

The second order soliton solution for the SNM �3� is
given by

u1�x,z� = A
 1

��2�1/4	2x

�
e−x2/2�2−i�9/4�2−R0A2�z, �44�

where

1

�4 = − R0�A
2. �45�

The power and the beam width of u1�x ,z� are given by A2

and 	3�, respectively. For the Gaussian-function type nonlo-
cal response, the second order soliton solution for the SNM
�3� is given by

FIG. 6. The propagations of light beams with different input
intensity profiles that are described by �a� ��0�A ,0 ,0 ,x��2 and �b�
��0�A ,
 ,� ,x��2, respectively. Here w0=100, 	=1, A=138.159, 

=−0.0767, �=0.0150 and the degree of nonlocality w0 /	=100.

FIG. 7. �a� The comparison between R�x� and ��0�A ,
 ,� ,x��2.
Dashed line: R�x� /R�0�; solid line: ��0�A ,
 ,� ,x��2
/ ��0�A ,
 ,� ,0��2; �b� the propagation of the light beam with an
input intensity profile described by ��0�A ,
 ,� ,x��2. Here w0=1,
	=1, A=2.206, 
=−0.126, �=0.0280, and the degree of nonlocal-
ity w0 /	=1.

FIG. 8. �a� The comparison between R�x� and ��0�A ,
 ,� ,x��2.
Dashed line: R�x� /R�0�; solid line: ��0�A ,
 ,� ,x��2
/ ��0�A ,
 ,� ,0��2; �b� the propagation of the light beam with an
input intensity profile described by ��0�A ,
 ,� ,x��2. Here w0=0.5,
	=1, A=1.610, 
=−0.158, �=0.0408, and the degree of nonlocal-
ity w0 /	=0.5.
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u1�x,z� = 
	�w0
3

2�4 �1/2
 1

��2�1/4	2x

�
e−�x2/2�2�−i��9/4�2�−�w0

2/2�4��z.

�46�

This soliton solution can describe the second order soliton
state of the NNLSE �1� exactly in the strongly nonlocal case
when w0 / �	3���10 but cannot describe it exactly in the
generally nonlocal case when w0 / �	3��
2.

The second order generally nonlocal soliton solution in
the second approximation is given by

�1�A,
,�,x� � A
 1

�	2�1/4

exp
−
x2

2	2�	2x

	

� �1 + 

45	6

16
−

5	4

4
x2 −

	2

4
x4�

+ 
2
−
8375	12

512
+

215	10

64
x2 +

73	8

64
x4

+
19	6

48
x6 +

	4

32
x8� + �
385	8

32
−

35	6

8
x2

−
7	4

8
x4 −

	2

6
x6�� , �47�

and


1 �
3

2	2 +
15
	4

4
−

165
2	10

8
+

105�	6

8
. �48�

For the Gaussian-function type nonlocal response function
�21�, as shown in Fig. 10, the difference between
��1�A ,
 ,� ,x��2 and ��1�A ,0 ,0 ,x��2 is small in the generally
nonlocal case. As an Hermite-Gaussian function, the power
and the beamwidth of �1�A ,0 ,0 ,x� are given by A2 and

	3	, respectively. So the power and the beamwidth
of �1�A ,
 ,� ,x� are also approximatively given by A2 and
	3	, respectively. We can approximatively determine the
degree of nonlocality by w0 / �	3	� and approximatively ob-
tain

V�x� � − �
−�

+� 1

w0
	�

exp�−
�x − ��2

w0
2 ��1

2�A,0,0,��d�

= −
A2

	��	2 + w0
2�

e− x2

	2+w0
2
2x2/	2 + w0

2/	2 + w0
4/	4

�1 + w0
2/	2�2 ,

�49�

and

A2 �
	��1 + w0

2/	2�5/2

2	�w0
2/	2 − 2�

, �50a�

V0 � −
w0

2�1 + w0
2/	2�

2	4�w0
2/	2 − 2�

, �50b�


 � −
�w0

2/	2 − 4�
4	6�1 + w0

2/	2��w0
2/	2 − 2�

, �50c�

� �
�w0

2/	2 − 6�
12	8�1 + w0

2/	2�2�w0
2/	2 − 2�

. �50d�

In the strongly nonlocal limit the degree of nonlocality
w0 / �	3	��1, we have

A2 �
	�w0

3

2	4 , �51a�

V0 � −
w0

2

2	4 , �51b�


 � −
1

4	4w0
2 , �51c�

FIG. 9. The dependence of the soliton’s power P and phase
constant � on its beamwidth 	. Dashed lines are described by Eq.
�42� and Eq. �43�, respectively; solid lines are directly calculated
with parameters A ,
 ,� numerically found by the fixed-point
method presented in Appendix A. Here w0=6.

FIG. 10. The comparison between ��1�A ,
 ,� ,x��2 �dashed line�
and ��1�A ,0 ,0 ,x��2 �solid line�. Here w0=1.5, 	=1/	3, A=7.606,

=−0.450, �=0.005 30, and the degree of nonlocality w0 / �	3	�
=1.5.
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� �
1

12	4w0
4 . �51d�

As the degree of nonlocality w0 / �	3	� approaches infinity,
the parameters 
 and � approach zero, and �1�A ,
 ,� ,x�
approaches �1�A ,0 ,0 ,x�. Therefore in the strongly nonlocal
case an Hermite-Gaussian-function-like second order soliton

solution is obtained, and the power and the phase constant of
�1�A ,
 ,� ,x� are both in inverse proportion to the fourth
power of its beamwidth. As indicated in Fig. 11 and Fig. 12,
the second order soliton solution in the second perturbation
�1�A ,
 ,� ,x� can describe the second order soliton state of
the NNLSE �1� exactly when w0 / �	3	�=1.5 and describe it
in high quality when w0 / �	3	�=1. As shown by the values

of �̄ in Table I, �1�A ,
 ,� ,x� can exactly describe the second
order nonlocal soliton state in the generally nonlocal cases.

Finally since all the eigenfunctions of the harmonic oscil-
lator can be found systematically �23�, it is possible that in

FIG. 11. �a� The comparison between R�x� and ��1�A ,
 ,� ,x��2.
Dashed line: R�x� /R�0�; solid line: ��1�A ,
 ,� ,x��2
/ ��1�A ,
 ,� ,0.65��2; �b� the propagation of the light beam with an
input intensity profile described by ��1�A ,
 ,� ,x��2. Here w0=1.5,
	=1/	3, A=7.606, 
=−0.450, �=0.005 30, and the degree of non-
locality w0 / �	3	�=1.5.

FIG. 12. �a� The comparison between R�x� and ��1�A ,
 ,� ,x��2.
Dashed line: R�x� /R�0�; solid line: ��1�A ,
 ,� ,x��2
/ ��1�A ,
 ,� ,0.65��2; �b� the propagation of the light beam with an
input intensity profile described by ��1�A ,
 ,� ,x��2. Here w0=1,
	=1/	3, A=6.133, 
=−0.492, �=0.0145, and the degree of non-
locality w0 / �	3	�=1.

FIG. 13. �a� The comparison between V�A ,
 ,� ,x� �solid line�
and Ṽ�x� �dashed line�; �b� the propagation of the light beam with
an input intensity profile described by ��1�A ,
 ,� ,x��2. Here w0

=2, 	=1/	3, A=12.162, 
=−0.442, �=0.0179, and the degree of
nonlocality w0 / �	3	�=2.

FIG. 14. �a� The comparison between V�A ,
 ,� ,x� �solid line�
and Ṽ�x� �dashed line�; �b� The propagation of the light beam with
an input intensity profile described by ��1�A ,
 ,� ,x��2. Here w0

=10, 	=1/	3, A=48.257, 
=−0.348, �=0.0141, and the degree of
nonlocality w0 / �	3	�=10.
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analogy to a perturbed harmonic oscillator we can also ap-
proximately calculate the third order soliton solution or the
fourth order soliton solution and so on in the generally non-
local case for the Gaussian-function type nonlocal response.

B. The nonlocal case of the exponential-decay
type nonlocal response

As indicated, to �0�A ,
 ,� ,x� and �1�A ,
 ,� ,x� in the
nonlocal case of the Gaussian-function type nonlocal re-
sponse and to �0�A ,
 ,� ,x� in the nonlocal case of the
exponential-decay type nonlocal response, we have
V�2��A ,
 ,� ,0��0 for generally nonlocal cases. If we define

Ṽ�x� = V0 +
1

2	4x2 + 
x4 + �x6, �52�

we will get V�A ,
 ,� ,x�� Ṽ�x�. But as shown in Figs. 13�a�
and 14�a�, to �1�A ,
 ,� ,x� in the nonlocal case of the
exponential-decay type nonlocal response, we have
V�2��A ,
 ,� ,0��0. In such a case we cannot define 1/	4

=V�2��A ,
 ,� ,0� and cannot define the parameters 	 ,
 ,� as
those in Eqs. �20�. However, as shown in Figs. 13�a� and
14�a�, we still can find suitable values of A ,
 ,� for a fixed

value of 	 to make V�A ,
 ,� ,x�� Ṽ�x�. These suitable val-
ues of A ,
 ,� can be calculated by solving the following
coupling equations:

V�A,
,�,x0� = V0 +
1

2	4x0
2 + 
x0

4 + �x0
6, �53a�

V��A,
,�,x0� =
1

	4x0 + 4
x0
3 + 6�x0

5, �53b�

V��A,
,�,x0� =
1

	4 + 12
x0
2 + 30�x0

4, �53c�

where x0�0 and V0=V�A ,
 ,� ,0�. In Appendix B we
present a fixed-point method to calculate these parameters
A ,
 ,� with Eqs. �53�. In Figs. 13�b�, 14�b�, and 15�b� we
show the propagation of lights with input intensity profiles
described by ��1�A ,
 ,� ,x��2. Even when the w0 / �	3	�
=0.5, there still exists a second order nonlocal soliton. As

shown by the values of �̄ in Table I, �1�A ,
 ,� ,x� can de-
scribe the generally nonlocal soliton state in high quality.
Since the difference between �1�A ,
 ,� ,x� and �1�A ,0 ,0 ,x�
is small, we can approximately get

V�x� � − �
−�

+� 1

2w0
exp
−

�x − ��
w0

���1�A,0,0,���2d�

=
A2

8w0

	2

w0
2 + 2�e

	2

4w0
2�e−x/w0�erf
 	

2w0
−

x

	
� − 1�

+ ex/w0�erf
 	

2w0
+

x

	
� − 1�� +

A2	

2	�w0
2
e−x2/	2

.

�54�

By defining

U�x� = V�x�/A2 �55�

and combining with Eqs. �53�, we obtain

A �	 4x0
2/	4

24�U�x0� − U�0�� − 9U��x0�x0 + U��x0�x0
2 . �56�

For example, when w0=10, 	=1/	3, x0=2, from Eqs.
�54�–�56� we get A�47.323 that is close to the numerically

FIG. 15. �a� The comparison between R�x� and ��1�A ,
 ,� ,x��2.
Dashed line: R�x� /R�0�; solid line: ��1�A ,
 ,� ,x��2
/ ��1�A ,
 ,� ,0.65��2; �b� the propagation of the light beam with an
input intensity profile described by ��1�A ,
 ,� ,x��2. Here w0=0.5,
	=1/	3, A=6.303, 
=−0.609, �=0.0270, and the degree of non-
locality w0 / �	3	�=0.5.

FIG. 16. �a� The comparison between V�A ,
 ,� ,x� �solid line�
and Ṽ�x� �dashed line�; �b� the propagation of the light beam with
an input intensity profile described by ��2�A ,
 ,� ,x��2. Here w0

=2, 	=1/	5, A=19.694, 
=−1.327, �=0.0606, and the degree of
nonlocality w0 / �	5	�=2.
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calculated value A=48.257.

While V�A ,
 ,� ,x�� Ṽ�x�, as shown in Figs. 13�a� and
14�a� there still exists a difference of H�x�=V�A ,
 ,� ,x�
− Ṽ�x�. To achieve higher accuracy we should take H�x� into

account and set Ṽ�x�=V0+x2 / �2	2�+
x4+�x6+H�x�. View-
ing H�x� as a perturbation we will obtain another higher

accurate second order soliton solution. However, the form of
H�x� is rather complex and we will leave it for future further
work and do not intent to deal with the effect of H�x� in this
paper.

Now let us consider the third order nonlocal soliton. The
third order generally nonlocal soliton solution in the second
approximation is given by

�2�A,
,�,x� � A
 1

�	2�1/4

exp
−
x2

2	2� 1
	2
�− 1 +

2x2

	2 + 

−
45	6

16
+

123	4

8
x2 −

13	2

4
x4 −

1

2
x6� + 
2
11 927	12

512

−
24 587	10

256
x2 +

41	8

64
x4 +

193	6

96
x6 +

97	4

96
x8 +

	2

16
x10� + �
−

655	8

32
+

1405	6

16
x2 −

125	4

8
x4 −

25	2

12
x6

−
1

3
x8�� . �57�

As shown in Fig. 16 and Table I, �1�A ,
 ,� ,x� can describe
the third order generally nonlocal soliton only qualitatively.
To obtain a higher more accurate third order soliton solution
we should take all perturbation into account or develop an-
other new method.

IV. CONCLUSION

In analogy to a perturbed harmonic oscillator, we calcu-
late the fundamental and some other higher order soliton
solutions in the second approximation in the generally non-
local case. Numerical simulations confirm that the soliton
solutions in the second perturbation can describe the funda-
mental and second order soliton states of the NNLSE �1� in
high quality. For the nonlocal case of the exponential-decay
type nonlocal response, the Gaussian-function-like soliton
solution cannot describe the fundamental soliton state of the
NNLSE �1� exactly even in the strongly nonlocal case, that
greatly differs from the nonlocal case of the Gaussian-
function type nonlocal response. The functional dependence
of the nonlocal soliton’s power and phase constant on its
beamwidth are greatly different from that of the local soliton.
In the strongly nonlocal case, the soliton’s power and phase
constant are both in inverse proportion to the fourth power of
its beamwidth for the nonlocal case of the Gaussian function
type nonlocal response, and are both in inverse proportion to
the third power of its beamwidth for the nonlocal case of the
exponential-decay type nonlocal response.
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APPENDIX A: HOW TO CALCULATE THE PARAMETERS
A ,� ,� WITH EQ. (20)

In principle, V�A ,
 ,� ,x� and the parameters A ,
 ,� can
be found by solving Eq. �19� and Eqs. �20� directly, but these
tasks are considerably involved. Here we present a fixed-
point method to calculate these parameters A ,
 ,� for a fixed
value of 	. Firstly corresponding to V�A ,
 ,� ,x� in Eq. �19�,
we define

U�
,�,x� =
V�A,
,�,x�

A2 . �A1�

For an arbitrary pair of initial values of 
0 ,�0 with suitable
order of the magnitude, we can calculate U�
0 ,�0 ,x�. Let

A1 =	 1

	4U�2��
0,�0,0�
, �A2�


1 = A1
2U�4��
0,�0,0�/4!, �A3�

�1 = A1
2U�6��
0,�0,0�/6!. �A4�

For such a pair of values of 
1 ,�1, we can find another
U�
1 ,�1 ,x�. Again we obtain another set of values
�A2 ,
2 ,�2�. Repeating these steps of calculations, we can
obtain a series of sets of values �A2 ,
3 ,�3�, �A3 ,
4 ,�4�, and
so on. The difference between �Am ,
m ,�m� and
�Am+1 ,
m+1 ,�m+1� will approach zero as the number of m
approaches infinity. To some accuracy, we can calculate pa-
rameters A ,
 ,� for a fixed value of 	.

APPENDIX B: HOW TO CALCULATE THE PARAMETERS
A ,� ,� WITH EQ. (53)

For a fixed value of 	 and one suitable point x0�0 �in
this paper we set x0=2�, corresponding to V�A ,
 ,� ,x� in Eq.
�19� we define
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U�x� =
V�A,
,�,x�

A2 . �B1�

For an arbitrary pair of initial values of 
0 ,�0 with suitable
order of the magnitude, we can calculate U�x�. Let

A1 =	 4x0
2/	4

24�U�x0� − U�0�� − 9U��x0�x0 + U��x0�x0
2 ,

�B2�


1 = A1
27U��x0�x0 − 12�U�x0� − U�0�� − U��x0�x0

2

4x0
4 ,

�B3�

�1 = A1
2U��x0�x0

2 + 8�U�x0� − U�0�� − 5U��x0�x0

8x0
6 . �B4�

For such a pair of values of 
1 ,�1, we can find another U�x�.
Again we obtain another set of values �A2 ,
2 ,�2�. Repeating
the steps of the calculations, to some accuracy we can calcu-
late parameters A ,
 ,� for a fixed value of 	.
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